Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract We present the first catalog of fast radio burst (FRB) host galaxies from CHIME/FRB Outriggers, selected uniformly in the radio and the optical by localizing 81 new bursts to 2″ × ∼ 60″ accuracy using CHIME and the k’niʔatn k’l ⌣ stk’masqt Outrigger station, located 66 km from CHIME. Of the 81 localized bursts, we use the probabilistic association of transients to their hosts algorithm to securely identify 21 new FRB host galaxies, and compile spectroscopic redshifts for 19 systems, 15 of which are newly obtained via spectroscopic observations. The most nearby source is FRB 20231229A, at a distance of 90 Mpc. One burst in our sample is from a previously reported repeating source in a galaxy merger (FRB 20190303A). Three new FRB host galaxies (FRBs 20230203A, 20230703A, and 20231206A) are found toward X-ray and optically selected galaxy clusters, potentially doubling the sample of known galaxy cluster FRBs. A search for radio counterparts reveals that FRB 20231128A is associated with a luminous persistent radio source (PRS) candidate with high significance (Pcc ∼ 10−2). If its compactness is confirmed, it would be the nearest known compact PRS atz= 0.1079. Our catalog significantly increases the statistics of the Macquart relation at low redshifts (z < 0.2). In the near future, the completed CHIME/FRB Outriggers array will produce hundreds of FRBs localized with very long baseline interferometry (VLBI). This will significantly expand the known sample and pave the way for future telescopes relying on VLBI for FRB localization.more » « lessFree, publicly-accessible full text available August 13, 2026
-
Abstract Localizing fast radio bursts (FRBs) to their host galaxies is an essential step to better understanding their origins and using them as cosmic probes. The Canadian Hydrogen Intensity Mapping Experiment (CHIME)/FRB Outriggers program aims to add very long baseline interferometry localization capabilities to CHIME, such that FRBs may be localized to tens of milliarcsecond precision at the time of their discovery, more than sufficient for host galaxy identification. The first-built outrigger telescope is theOutrigger (KKO), located 66 km west of CHIME. Cross-correlating KKO with CHIME can achieve arcsecond precision along the baseline axis while avoiding the worst effects of the ionosphere. Since the CHIME–KKO baseline is mostly east/west, this improvement is mostly in right ascension. This paper presents measurements of KKO’s performance throughout its commissioning phase, as well as a summary of its design and function. We demonstrate KKO’s capabilities as a standalone instrument by producing full-sky images, mapping the angular and frequency structure of the primary beam, and measuring feed positions. To demonstrate the localization capabilities of the CHIME–KKO baseline, we collected five separate observations each, for a set of 20 bright pulsars, and aimed to measure their positions to within 5″. All of these pulses were successfully localized to within this specification. The next two outriggers are expected to be commissioned in 2024 and will enable subarcsecond localizations for approximately hundreds of FRBs each year.more » « less
-
Abstract In 2021, a catalog of 536 fast radio bursts (FRBs) detected with the Canadian Hydrogen Intensity Mapping Experiment (CHIME) radio telescope was released by the CHIME/FRB Collaboration. This large collection of bursts, observed with a single instrument and uniform selection effects, has advanced our understanding of the FRB population. Here we update the results for 140 of these FRBs for which channelized raw voltage (“baseband”) data are available. With the voltages measured by the telescope’s antennas, it is possible to maximize the telescope sensitivity in any direction within the primary beam, an operation called “beamforming.” This allows us to increase the signal-to-noise ratios of the bursts and to localize them to subarcminute precision. The improved localizations are also used to correct the beam response of the instrument and to measure fluxes and fluences with an ∼10% uncertainty. Additionally, the time resolution is increased by 3 orders of magnitude relative to that in the first CHIME/FRB catalog, and, applying coherent dedispersion, burst morphologies can be studied in detail. Polarization information is also available for the full sample of 140 FRBs, providing an unprecedented data set to study the polarization properties of the population. We release the baseband data beamformed to the most probable position of each FRB. These data are analyzed in detail in a series of accompanying papers.more » « less
An official website of the United States government
